
An explicit computation of the Bures metric over the space of N-dimensional density matrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 11333

(http://iopscience.iop.org/1751-8121/40/37/010)

Download details:

IP Address: 171.66.16.144

The article was downloaded on 03/06/2010 at 06:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/37
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 11333–11341 doi:10.1088/1751-8113/40/37/010

An explicit computation of the Bures metric over the
space of N-dimensional density matrices

S J Akhtarshenas

Department of Physics, University of Isfahan, Isfahan, Iran

E-mail: akhtarshenas@phys.ui.ac.ir

Received 14 May 2007, in final form 31 July 2007
Published 29 August 2007
Online at stacks.iop.org/JPhysA/40/11333

Abstract
The aim of this paper is to provide a method for explicit computation of the
Bures metric over the space of N-level quantum system, based on the coset
parametrization of density matrices.

PACS numbers: 03.65.−w, 02.40.Ky

1. Introduction

Recent developments in the emerging field of quantum information theory have received a
great deal of attention in investigation of the properties of the set of density matrices of an
N-level quantum system. In view of such considerable interest a lot of work has been devoted
to describe and parametrize density matrices. Any density matrix of an N-level quantum
system can be expanded in terms of N2 − 1 orthogonal generators of SU(N) [1], which is a
generalization of the Bloch or coherence vector representation for two-level systems. Boya
et al [2] have shown that the mixed state density matrices for N-level quantum systems can
be parametrized in terms of squared components of an (N − 1)-sphere and unitary matrices.
By using the Euler angle parametrization of an SU(3) group [3], Byrd and Slater [4] have
presented a parametrization for density matrices of three-level systems. An Euler angle-based
parametrization for density matrices of four-level systems is also introduced in [5], and has
been used by Tilma and Sudarshan [6] in order to study the entanglement properties of the two-
qubit system. A generalized Euler angle parametrization for SU(N) and U(N) groups is given
by Tilma and Sudarshan [7, 8]. In a comprehensive analysis [9], Życzkowski and Słomczyński
analyzed the geometrical properties of the set of mixed states for an arbitrary N-level system
and classified the space of density matrices. Diţǎ [10] has provided an explicit parametrization
for general N-dimensional Hermitian operators that may be considered either as Hamiltonian
or density matrices. The parametrization is based on the factorization of N × N unitary
matrices [11]. A parametrization useful to study the entanglement properties of two-qubit
density matrices is also introduced in [12], in which authors have shown that the space of
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two-qubit density matrices can be characterized with 12-dimensional (as real manifold) space
of a complex orthogonal group SO(4, C) together with four positive Wootters’s numbers [13],
where, of course, the normalization condition reduces the number of parameters to 15.

Efforts have been also made to study the geometry of density matrices. In recent years,
the Riemannian Bures metric [14] has become an interesting subject for the understanding
of the geometry of quantum state space. It is the quantum analog of Fisher information in
classical statistics, i.e. in the subspace of diagonal matrices it induces the statistical distance
[15]. The Bures measure is monotone in the sense that it does not increase under the action of
completely positive, trace preserving maps [16]. It is, indeed, minimal among all monotone
metrics and its extension to pure state is exactly the Fubini–Study metric [16]. The Bures
distance between any two mixed states ρ1 and ρ2 is a function of their fidelity F(ρ1, ρ2) [17, 18]

dB(ρ1, ρ2) =
√

2 − 2
√

F(ρ1, ρ2), F (ρ1, ρ2) =
[

Tr

(√√
ρ1ρ2

√
ρ1

)]2

. (1)

Fidelity allows one to characterize the closeness of the pair of mixed states ρ1 and ρ2, so, it is
an important concept in quantum mechanics, quantum optics and quantum information theory.
An explicit formula for the infinitesimal Bures distance between ρ and ρ + dρ was found by
Hübner [19]

dB(ρ, ρ + dρ)2 = 1

2

N∑
i,j=1

|〈λi |dρ|λj 〉|2
λi + λj

, (2)

where λj and |λj 〉 (j = 1, 2, . . . , N) represent eigenvalues and eigenvectors of ρ, respectively.
Dittmann has derived several explicit formulae, that do not require any diagonalization
procedure, for Bures metric on the manifold of finite-dimensional nonsingular density matrices
[20, 21].

The probability measure induced by the Bures metric in the space of mixed quantum states
has been defined by Hall [22]. The question of how many entangled or separable states are
there in the set of all quantum states is considered by Życzkowski et al in [23, 24]. Sommers
and Życzkowski [25] have computed the Bures volume of the (N2 − 1)-dimensional convex
set and the (N2 − 2)-dimensional hyperarea of the density matrices of an N-level quantum
system. In a considerable work, Slater investigated the use of the volume elements of the
Bures metric as a natural measure over the (N2 −1)-dimensional convex set of N-level density
matrices to determine or estimate the volume of separable states of the pairs of qubit–qubit
[26, 27] and qubit–qutrit [28, 29].

By using the Dittmann formula [20] and the Euler-angle parametrization [4], Slater has
computed the Bures metric for the eight-dimensional state space of the three-level quantum
systems [30]. In a similar work, but instead in terms of the coset space parametrization, we
have very recently given an explicit expression for the Bures metric of the space of a three-level
quantum system [31]. The coset parametrization provides a geometrical description of the
set of density matrices and, as well as the Euler angle parametrization does, eliminates any
overparametrization of the density matrix [10].

The aim of this paper is to provide a method for computation of the Bures metric in
N-level quantum systems, based on the Hübner formula and the coset parametrization of
density matrices. We also use the possibility of factorizing each coset component in terms
of a diagonal phase matrix and an orthogonal matrix [11, 32]. The paper, therefore, can be
regarded as a further development in the explicit computation of the Bures metric. We show
that in the canonical coset parametrization, the Bures metric matrix is divided into two blocks:
an (N − 1)-dimensional diagonal matrix corresponding to the eigenvalue coordinates and an
N(N − 1)-dimensional matrix corresponding to the coset coordinates. It therefore provides
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a factorization of the Bures measure on the space of density matrices as the product of the
measure on the space of eigenvalues and the truncated Haar measure on the space of unitary
matrices. It is shown that the coset parametrization gives a compact expression for all metric
elements. The analytical expression for Bures metric can be used in computing the Bures
volumes of quantum states as well as to study the problem of what proportion of the convex set
of the bipartite systems is separable. The results also enable the calculation of the minimum
Bures distance of a given density matrix from the convex set of separable states, in order to
quantify entanglement of the state [33, 34].

The paper is organized as follows: in section 2, the coset space parametrization of an
N-level density matrix is introduced. Based on the parametrization, we provide in section 3 a
formula for computation of the Bures metric, explicitly. The paper is concluded in section 4
with a brief conclusion.

2. Canonical coset parametrization of density matrices

The state space of an N-level quantum system is identified with the set of all N ×N Hermitian
positive semidefinite complex matrices of trace unity, and comprises an (N2 −1)-dimensional
convex set MN . The total number of independent variables needed to parametrize a density
matrix ρ is equal to N2−1, provided no degeneracy occurs. Let us denote the set of all diagonal
density matrices of an N-level quantum system by DN . An arbitrary element ρ(D) ∈ DN can
be written as

ρ(D) = diag{λ1, λ2, . . . , λN }, 0 � λi � 1,

N∑
i=1

λi = 1, (3)

which simply denotes an (N −1)-dimensional simplex SN−1 for the set of all diagonal density
matrices.

A generic density matrix ρ ∈ MN in an arbitrary basis can be obtained as the orbit of
points ρ(D) ∈ DN under the action of the unitary group U(N) as

ρ = Uρ(D)U †. (4)

Let H be a maximum stability subgroup, i.e. a subgroup of U(N) that consists of all the group
elements h that will leave the diagonal state ρ(D) invariant,

hρ(D)h† = ρ(D), h ∈ H, ρ(D) ∈ DN, (5)

that is, H contains all elements of U(N) that commute with ρ(D). For every element U ∈ U(N),
there is a unique decomposition of U into a product of two group elements, one in H and the
other in the quotient G/H [35], i.e.

U = Ωh, U ∈ U(N), h ∈ H, Ω ∈ U(N)/H. (6)

Therefore the action of an arbitrary group element U ∈ U(N) on the point D ∈ DN is given
by

ρ = Uρ(D)U † = Ωhρ(D)h†Ω† = Ωρ(D)Ω†. (7)

Since DN consists of points with different degrees of degeneracy, the maximum stability
subgroup will differ for different ρ(D) ∈ DN [9]. Let mi denotes degree of degeneracy
of eigenvalue λi of matrix ρ(D). It follows from this kind of spectrum that ρ(D) remains
invariant under the action of arbitrary unitary transformation performed in each of the
mi-dimensional eigensubspaces. Therefore H = U(m1) ⊗ U(m2) ⊗ · · · ⊗ U(mk) is a
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maximum stability subgroup for ρ(D), and the quotient space U(N)/H is a complex flag
manifold

F = U(N)

U(m1) ⊗ U(m2) ⊗ · · · ⊗ U(mk)
, m1 + m2 + · · · + mk = N. (8)

Two special kinds of degeneracy of the spectrum of ρ(D) are as follows. (i) Let ρ(D) represents
the maximally mixed state ρ∗ = diag

{
1
N

, 1
N

, . . . , 1
N

}
. In this case the stability subgroup H

is U(N), and the orbit of point ρ∗ is only one point, i.e. ρ = ρ∗. (ii) On the other hand if
the spectrum of ρ(D) is non-degenerate, then the stability subgroup is an N-dimensional torus
T N = U(1)⊗N , and the orbit of the point ρ(D) is

ρ = Ωρ(D)Ω†, Ω ∈ U(N)/T N . (9)

Since the maximal torus T N is itself a subgroup of all maximum stability subgroups, the orbit
of points ρ(D) ∈ DN under the action of quotient U(N)/T N generates all points of the space
MN . The diagonal matrix ρ(D) is defined up to a permutation of its entries and, one can divide
the simplex SN−1 into N ! identical simplexes and take any of them. Each part identifies points
of SN−1 which have the same coordinates, but with different ordering, and can be considered
as the homomorphic image of simplex SN−1 relative to the discrete permutation group PN , i.e.
SN−1/PN . Therefore the points of MN can be characterized as the orbit of diagonal matrices
D ∈ SN−1/PN under the action of quotient Ω ∈ U(N)/T N .

Further insight into the space of density matrices can be obtained by writing the quotient
Ω ∈ U(N)/T N as the product of N − 1 components as ([35], page 401)

Ω = �(N;N)�(N−1;N) · · ·�(2;N), (10)

where

�(m;N) ∈ U(m) ⊗ T N−m

U(m − 1) ⊗ T N−m+1
, m = 2, . . . , N. (11)

A typical coset representative �(m;N) can be written as

�(m;N) =
(

SU(m)/U(m − 1) O

OT IN−m

)
, (12)

where O,OT and IN−m represent, respectively, the m×(N −m) zero matrix, its transpose and
the (N−m)×(N−m) identity matrix. The 2(m−1)-dimensional coset space SU(m)/U(m−1)

has the following m × m matrix representation ([35], page 351)

SU(m)/U(m − 1) =




cos
√

B(m)[B(m)]† B(m) sin
√

[B(m)]†B(m)√
[B(m)]†B(m)

− sin
√

[B(m)]†B(m)√
[B(m)]†B(m)

[B(m)]† cos
√

[B(m)]†B(m)


 , (13)

where B(m) represents an (m − 1) × 1 complex matrix and [B(m)]† is its adjoint.
Now by parametrizing the column matrix B(m) as

(
γ

(m)
1 eiξ (m)

1 , γ
(m)
2 eiξ (m)

2 , . . . , γ
(m)
m−1eiξ (m)

m−1
)T

for m = 2, 3, . . . , N , where γ
(m)
i and ξ

(m)
i are real numbers1, the component �(m;N) can be

factorized as

�(m;N) = X(m;N)R(m;N)X(m;N)† for m = 2, 3, . . . , N, (14)

1 The correspondence between general notation of this paper and that in [31], where the N = 3 case is explicitly
computed, is as γ

(2)
1 = α, ξ

(2)
1 = φ, γ

(3)
1,2 = β1,2 and ξ

(3)
1,2 = ψ1,2.
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where X(m;N) is a diagonal N × N phase matrix with X
(m;N)
kl = δkl exp

{
iξ (m)

k

}
and ξ

(m)
i = 0

for i � m, and R(m;N) is an N × N orthogonal matrix with the following nonzero elements

R
(m;N)
ij = δij + γ̂

(m)
i γ̂

(m)
j (cos γ (m) − 1) for 1 � i, j � m − 1

R
(m;N)
im = −R

(m;N)
mi = γ̂

(m)
i sin γ (m) for 1 � i � m − 1

R(m;N)
mm = cos γ (m)

R
(m;N)
ii = 1 for m + 1 � i � N,

(15)

where we have defined γ̂
(m)
i = γ

(m)
i

/
γ (m) and γ (m) =

√∑m−1
i=1

(
γ

(m)
i

)2
. As we will see later

the important ingredient of our approach in computing the Bures metric is the possibility of
writing the factorization (14).

3. Bures metric

In this section we shall attempt to develop a method of computing the Bures metric of an
arbitrary density matrix of an N-level quantum system. We will use the canonical coset
parametrization of the density matrices introduced in the last section.

Let ρ be a generic density matrix of an N-level quantum system, with eigenvalues λj

and corresponding eigenvectors |λj 〉, (j = 1, 2, . . . , N). In the light of ρ = Ωρ(D)Ω†, with
ρ(D) = diag{λ1, λ2, . . . , λN } as the diagonal matrix of ρ eigenvalues, the ρ eigenvectors can
be written in terms of ρ(D) eigenvectors as |λi〉 = Ω|i〉. Therefore invoking the Hübner
formula (2), we can write the infinitesimal Bures distance between ρ and ρ + dρ as

dB(ρ, ρ + dρ)2 = 1

2

N∑
i,j=1

|(〈i|Ω†) d(Ωρ(D)Ω†)(Ω|j 〉)|2
λi + λj

, (16)

which takes the form (remember that Ω is unitary and therefore dΩ† = −Ω† dΩΩ†)

dB(ρ, ρ + dρ)2 = 1

2

N∑
i,j=1

|〈i|dρ(D)|j 〉 + 〈i|[Ω† dΩ, ρ(D)]|j 〉|2
λi + λj

, (17)

By using the equations ρ(D)|i〉 = λi |i〉 and 〈i|j 〉 = δij we get

dB(ρ, ρ + dρ)2 =
N∑

i=1

(dλi)
2

4λi

+
N∑

i<j

�ij |(Ω† dΩ)ij |2, (18)

where we have defined �ij as

�ij = (λi − λj )
2

λi + λj

. (19)

Equation (18) shows that the infinitesimal Bures distance is divided into two infinitesimal
distances corresponding to the eigenvalues coordinates and coset coordinates. Therefore the
Bures metric matrix becomes block diagonal as

g =
(

g(D) 0
0 g(C)

)
, (20)

where g(D) is a part of the Bures metric corresponding to the diagonal density matrix ρ(D),
and g(C) is the contribution of the coset coordinates in the Bures metric.
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In what follows our goal is to calculate the matrix elements of g(D) and g(C). In order to
calculate g(D), we first note that the N eigenvalues can be parametrized explicitly in terms of
N − 1 independent parameters θk (k = 1, 2, . . . , N − 1) as{

λk = sin2 θ1 sin2 θ2 · · · sin2 θk−1 cos2 θk for k = 1, 2, . . . , N − 1

λN = sin2 θ1 sin2 θ2 · · · sin2 θN−1.
(21)

By using the above coordinates for the eigenvalues of ρ, we can write the infinitesimal Bures
distance over the eigenvalues coordinates as

N∑
i=1

(dλi)
2

4λi

=
N−1∑
k,l=1

g
(D)
kl dθk dθl, (22)

where it can be easily seen that the metric g
(D)
kl is diagonal with elements

g
(D)
θ1θ1

= 1

g
(D)
θkθk

= sin2 θ1 sin2 θ2 · · · sin2 θk−1, for k = 2, 3, . . . , N − 1.
(23)

It is worth noting that the metric g(D) is independent of θN−1.
Now in order to calculate g(C), we define χ(m)

αm
(αm = 1, 2, . . . , 2(m − 1)) as the 2(m − 1)

real parameters of the coset component �(m;N) (m = 2, . . . , N) such that

χ(m)
αm

=
{

γ (m)
αm

for αm = 1, . . . , m − 1,

ξ (m)
αm

for αm = m, . . . , 2(m − 1).
(24)

Then the infinitesimal Bures distance over the coset coordinates can be written as
N∑

i<j

�ij |(Ω† dΩ)ij |2 =
N∑

m=2

N∑
m′=2

2(m−1)∑
αm=1

2(m′−1)∑
βm′=1

g
(m,m′;N)
αm,βm′ dχ(m)

αm
dχ

(m′)
βm′

=
N∑

m=2

2(m−1)∑
αm,βm=1

g
(m,m;N)
αm,βm

dχ(m)
αm

dχ
(m)
βm

+ 2
N∑

m<m′

2(m−1)∑
αm=1

2(m′−1)∑
βm′ =1

g
(m,m′;N)
αm,βm′ dχ(m)

αm
dχ

(m′)
βm′ . (25)

Now invoking the decomposition

Ω = �(N;N)�(N−1;N) · · ·�(2;N), (26)

we can write

|(Ω† dΩ)ij |2 =
N∑

m=2

|(K(m;N))ij |2 + 2
N∑

m<m′
Re{(K(m;N))ij (K

(m′;N))∗ij }, (27)

where we have defined

K(m;N) = W(m;N)†(�(m;N)† d�(m;N))W(m;N), (28)

with

W(m;N) = �(m−1;N) · · ·�(3;N)�(2;N) (29)

and W(2;N) = 1. The first term of the rhs of equation (27) shows sum over all pure contribution
of each coset component in the Bures distance, and can be identified with

n∑
i<j

�ij |(K(m;N))ij |2 =
2(m−1)∑

αm,βm=1

g
(m,m;N)
αm,βm

dχ(m)
αm

dχ
(m)
βm

. (30)
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The second term, however, shows the sum over mixed contribution of all pairs of coset
components in the Bures distance and can be used to write

n∑
i<j

�ij Re{(K(m;N))ij (K
(m′;N))∗ij } =

2(m−1)∑
αm,=1

2(m′−1)∑
βm′=1

g
(m,m′;N)
αm,βm′ dχ(m)

αm
dχ

(m′)
βm′ . (31)

Therefore g(C) is defined by the following symmetric matrix

g(C) =




g(2,2;N) g(2,3;N) · · · g(2,N;N)

g(3,3;N) · · · g(3,N;N)

. . .
...

g(N,N;N)


 . (32)

Now the object is to calculate the matrix elements of g(C), which can be achieved if we can
find an expression for (K(m;N))ij of equations (30), (31) in terms of the coset coordinates χ(m)

αm

(or equivalently in terms of γ (m)
αm

and ξ (m)
αm

). Therefore we have to expand �(m;N)† d�(m;N) of
equation (28) in terms of dγ (m) and dξ (m). This can be achieved by using the factorization
�(m;N) = X(m;N)R(m;N)X(m;N)† where we get

�(m;N)† d�(m;N) = X(m;N)R(m;N)T X(m;N)†(dX(m;N))R(m;N)X(m;N)†

− (dX(m;N))X(m;N)† + X(m;N)R(m;N)T (dR(m;N))X(m;N)†. (33)

By knowing that X(m;N) is a unitary diagonal matrix and R(m;N) is an orthogonal matrix, the
first two terms can be calculated easily by using the relation

dX
(m;N)
ij = ieiξ

(m)
i δij dξ

(m)
i . (34)

On the other hand to calculate the third term, equation (15) may be used to show that

dR
(m;N)
ij =

m−1∑
k=1

�
(m,N)

ij ;k dγ
(m)
k , (35)

where for a fixed k (= 1, 2, . . . , m − 1), the �
(m,N)

ij ;k denote the matrix elements of an N × N

matrix with nonzero elements:

�
(m;N)

ij ;k = (
γ̂

(m)
i δjk + γ̂

(m)
j δik − 2γ̂

(m)
i γ̂

(m)
j γ̂

(m)
k

)
(cos γ (m) − 1)/γ (m) − γ̂

(m)
i γ̂

(m)
j γ̂

(m)
k sin γ (m)

for 1 � i, j � m − 1

�
(m;N)

im;k = −�
(m;N)

mi;k = (
δik − γ̂

(m)
i γ̂

(m)
k

)
sin γ (m)/γ (m) + γ̂

(m)
i γ̂

(m)
k cos γ (m)

for 1 � i � m − 1

�
(m;N)

mm;k = −γ̂
(m)
k sin γ (m).

(36)

Using equations (34) and (35) in equation (33), we get

(�(m;N)† d�(m;N))ij = exp
{
i
(
ξ

(m,N)
i − ξ

(m,N)
j

)} m−1∑
k=1

((
E

(m;N)
ij

)
γk

dγ
(m)
k + i

(
E

(m;N)
ij

)
ξk

dξ
(m)
k

)
,

(37)

where
(
E

(m;N)
ij

)
γk

and
(
E

(m;N)
ij

)
ξk

have been defined by

(
E

(m;N)
ij

)
γk

=
m∑

l=1

R
(m;N)
li �

(m;N)

lj ;k (38)
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E

(m;N)
ij

)
ξk

= R
(m;N)
ki R

(m;N)
kj + δij δjk. (39)

Therefore for K(m;N) of equation (28), we find the following matrix elements

K
(m;N)
ij =

m−1∑
r=1

{(
K

(m;N)
ij

)
γr

dγ (m)
r +

(
K

(m;N)
ij

)
ξr

dξ (m)
r

}
, (40)

where we have defined

(
K

(m;N)
ij

)
γr

=
m∑

k,l=1

(
W

(m;N)
ik

)∗(
W

(m;N)
lj

)(
E

(m;N)
kl

)
γr

. (41)

and

(
K

(m;N)
ij

)
ξr

=
m∑

k,l=1

(
W

(m;N)
ik

)∗(
W

(m;N)
lj

)(
E

(m;N)
kl

)
ξr
, (42)

Finally, putting everything together, we find the following formula for the matrix elements of
the metric g(C):

g
(m,m′;N)

γ
(m)
r γ

(m′)
s

=
N∑

i<j

�ij Re
{(

K
(m;N)
ij

)
γ

(m)
r

(
K

(m′;N)
ij

)∗
γ

(m′)
s

}
, (43)

g
(m,m′;N)

ξ
(m)
r ξ

(m′)
s

=
N∑

i<j

�ij Re
{(

K
(m;N)
ij

)
ξ

(m)
r

(
K

(m′;N)
ij

)∗
ξ

(m′)
s

}
, (44)

g
(m,m′;N)

γ
(m)
r ξ

(m′)
s

=
N∑

i<j

�ij Re
{(

K
(m;N)
ij

)
γ

(m)
r

(
K

(m′;N)
ij

)∗
ξ

(m′)
s

}
, (45)

g
(m,m′;N)

ξ
(m)
r γ

(m′)
s

=
N∑

i<j

�ij Re
{(

K
(m;N)
ij

)
ξ

(m)
r

(
K

(m′;N)
ij

)∗
γ

(m′)
s

}
, (46)

for r = 1, 2, . . . , m−1, s = 1, 2, . . . , m′ −1 and m,m′ = 1, 2, . . . , N . Since the eigenvalues
coordinates are just included in the �ij terms of equations (43)–(46), it is clear that all matrix
elements of the metric g(C) are simply sum of the products of two independent functions, the
eigenvalues coordinates and the coset coordinates. It should be noted that for real density
matrices, i.e. ξ (m)

i = 0 for i = 1, 2, . . . , m−1 and m = 1, 2, . . . , N , we have �(m;N) = R(m;N).
In this case all quantities are real and equation (43) gives all matrix elements of the N(N−1)/2-
dimensional metric g(C).

4. Conclusion

We provide a method for explicit computation of the Bures metric in N-level quantum systems,
based on the coset parametrization of density matrices. We show that in the canonical coset
parametrization, the Bures metric matrix is divided into two blocks, an (N − 1)-dimensional
diagonal matrix corresponding to the eigenvalues coordinates, and an N(N − 1)-dimensional
matrix corresponding to the coset coordinates. It also provides a factorization of the Bures
measure on the space of density matrices as the product of the measure on the space of
eigenvalues and the truncated Haar measure on the space of unitary matrices.
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[23] Życzkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 J. Phys. Rev. A 58 883
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